Sb-Based n- and p-Channel Heterostructure FETs for High-Speed, Low-Power Applications
نویسندگان
چکیده
Heterostructure field-effect transistors (HFETs) composed of antimonide-based compound semiconductor (ABCS) materials have intrinsic performance advantages due to the attractive electron and hole transport properties, narrow bandgaps, low ohmic contact resistances, and unique band-lineup design flexibility within this material system. These advantages can be particularly exploited in applications where high-speed operation and low-power consumption are essential. In this paper, we report on recent advances in the design, material growth, device characteristics, oxidation stability, and MMIC performance of Sb-based HEMTs with an InAlSb upper barrier layer. The high electron mobility transistors (HEMTs) exhibit a transconductance of 1.3 S/mm at VDS = 0.2 V and an fT Lg product of 33 GHz-μm for a 0.2 μm gate length. The design, fabrication and improved performance of InAlSb/InGaSb p-channel HFETs are also presented. The HFETs exhibit a mobility of 1500 cm2/V-sec, an fmax of 34 GHz for a 0.2 μm gate length, a threshold voltage of 90 mV, and a subthreshold slope of 106 mV/dec at VDS = −1.0 V. key words: HEMTs, HFETs, MMICs, InAs, InGaSb
منابع مشابه
Scaling projections for Sb-based p-channel FETs
Numerical device modeling is used to study p-channel FETs with InSb, GaSb and InGaSb channels. To be as realistic as possible, the basic parameters are chosen to be those measured experimentally in state-ofthe-art high-mobility materials, and where possible, predictions are compared against published data. Confinement effects are captured in the simulations using the density-gradient descriptio...
متن کاملHigh-Speed Ternary Half adder based on GNRFET
Superior electronic properties of graphene make it a substitute candidate for beyond-CMOSnanoelectronics in electronic devices such as the field-effect transistors (FETs), tunnel barriers, andquantum dots. The armchair-edge graphene nanoribbons (AGNRs), which have semiconductor behavior,are used to design the digital circuits. This paper presents a new design of ternary half a...
متن کاملStudy of ozone surface passivation and n-type Dopant channel implants combined with ALD dielectrics
ABSRACT Germanium offers higher electron and hole mobility than silicon, making it an attractive option for future high-performance MOSFET applications. To date, Ge p-channel device behavior has shown promise, with many reports of measured hole mobilities exceeding that of Si. However, Ge n-channel devices have shown poor performance due to an asymmetric distribution of interface state density ...
متن کاملOptimization of n-channel and p-channel T-FET
In this work, we explore various optimization techniques using bandgap engineering to enhance the performance of tunnel FETs (T-FET) using extensive device simulations. We show that the heterostructure (Si1-γGeγ source or drain) tunnel FET (HT-FET) architecture allows scaling of the device to sub 20 nm gate length regime. N-channel HT-FET is optimized to meet ITRS low standby power and high per...
متن کاملRepresentation of a nanoscale heterostructure dual material gate JL-FET with NDR characteristics
In this paper, we propose a new heterostructure dual material gate junctionless field-effect transistor (H-DMG-JLFET), with negative differential resistance (NDR) characteristic. The drain and channel material are silicon and source material is germanium. The gate electrode near the source is larger. A dual gate material technique is used to achieve upward band bending in order to access n-i-p-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 91-C شماره
صفحات -
تاریخ انتشار 2008